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A FINITE ELEMENT SOLUTION TO TURBULENT 
DIFFUSION IN A CONVECTIVE BOUNDARY LAYER 

PRASAD PA1 AND T. H. TSANG 
Department of Chemical Engineering, University of Kentucky, Lexington, K Y  40506-0046. U.S.A.  

SUMMARY 
A second-order closure turbulence model is used to simulate the plume behaviour of a passive contaminant 
dispersed in a convective boundary layer. A time-splitting finite element scheme is used to solve the set of 
partial differential equations. It is shown that the second-order closure model compares favourably with 
recent findings from laboratories, wind-tunnel experiments and large-eddy simulations. We also compare 
the second-order closure model with the commonly used K-diffusion model for the same meteorological 
conditions. Case studies also show the effects of model parameters and turbulence variables on the plume 
behaviour. 
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INTRODUCTION 

Dispersion of contaminants in convective (daytime) boundary layers is a significant problem in 
air pollution and accidental release of hazardous chemicals in the atmosphere. Much progress has 
been made in recent years towards the fundamental understanding of this problem. The 
pioneering work of Deardorff and Willis’ and Willis and Deardorff 2-4 showed rather surprising 
plume behaviour in convective boundary layers. For the case of near-ground emission the plume 
‘lifts off’ from the ground and forms an elevated maximum concentration close to the inversion 
layer, whereas for the case of elevated sources the plume ‘descends’ and forms a local maximum at 
ground level at a certain downwind distance. These laboratory data were further confirmed by 
wind-tunnel experiments5 and field data.6 

Modelling attempts of atmospheric turbulence and diffusion fall into two categories. First, the 
Reynolds time-averaging approach leads to the formation of higher-order correlation terms. 
Thus there are more unknowns than the number of transport equations. In order to deal with this 
closure problem, the higher correlation terms are approximated by the dependent variables and 
their gradients. This procedure leads to a heirarchy of turbulence models. Today, the simplest and 
the most commonly used model in air pollution studies is the K-diffusion model (also called the 
atmospheric diffusion model), which is a first-order closure model. Secondly, the volume- 
averaging approach of Deardorff’ leads to large-eddy simulation (LES). The filtered momentum, 
material and energy balance equations are solved with the use of first- or second-order closure 
models for subgrid scale motions. Therefore, as the grid size increases, the volume-averaging 
method used in LES approaches the time-averaging method. Ordinarily, LES is more corn- 
putationally intensive. However, it has been proved that LES can provide detailed turbulence 
structures as evidenced by the recent work of Moeng’ and Nieuwstadt and De Valk.9 
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In this paper we show quantitatively that the K-diffusion model cannot describe the plume 
behaviour in convective boundary layers. We use Lewellen and Teske's second-order closure 
model," which is based on Donaldson's approach,' to calculate turbulence variables. Once 
calculated, they are used in the cross-wind integrated transport equations. This allows us to study 
the effects of turbulence variables and their model constants on the plume behaviour and to 
compare our results with the second-order closure models of Enger" and Sun.13 A time-splitting 
finite element method is used to solve the set of cross-wind integrated transport equations. In 
principle, the second-order closure model and the finite element method can be extended to three- 
dimensional problems. However, in order to validate the model, we use the 2D cross-wind 
transport equations because most laboratory data and simulation results provide cross-wind 
integrated concentration contours. 

THE SECOND-ORDER CLOSURE MODEL 

The two-dimensional cross-wind integrated transport equations for the dispersion of passive 
contaminants in a convective boundary layer have been derived by Enger" and Sun'3 and will 
not be repeated here. They are as follows: 

where x is the prevailing (mean) wind direction and z is the vertical height from the ground. U is 
the wind velocity in the x-direction, 0 is the virtual potential temperature, 4 ( =Gli2) is the 
turbulent velocity, UW is the vertical momentum flux, WW is the vertical velocity variance and 3 is 
the vertical heat flux. These variables are functions of z ,  the vertical height above ground level. g is 
the acceleration due to gravity. The length scales A, A2 and A3 are due to parametrizations of the 
higher-order terms. A,  b and s are model constants. The choice of length scales and model 
constants will de discussed later. The cross-wind integrated concentration C ,  is defined as 

C y = j  Cdy. 

W., and $ are the cross-wind integrated concentration flux and the cross-wind integrated 
covariance of concentration and temperature respectively, defined as 

m 

-0) 

The left-hand side of equations (1H3) contain the temporal derivatives and the advection terms of 
the three unknown variables. The first two terms on the right-hand side of equations (2) and (3) 
are the production terms due to the interaction with the mean field. The third term on the right- 
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hand side of equations (2) and (3) is the parameterization for the gradients of the third-order 
correlation. The fourth and fifth terms on the right-hand side of equation (2) are the model 
representation of the pressure diffusion term and the tendency-towards-isotropy term respect- 
ively. The last term on the right-hand side of equation (2) is the buoyancy production term. The 
last term on the right-hand side of equation (3) is the parameterization of the dissipation term for 
the covariance of concentration and temperature." 

The mean wind velocity U and the mean potential temperature 0 were obtained from the 
simulated data at 14:OO EST during day 33 of the Wangara experiments. At that time the 
convective boundary layer was fully developed with an inversion height zi = 1 100 m. The 
turbulence fields of meteorological variables, which include uw, ww, q and we, were calculated 
from a one-dimensional model based on Donaldson's approach with the assumption of horizon- 
tal homogeneity. The detailed equations of this second-order closure model to determine the 
turbulence variables are given in the Appendix. 

-- 

A Gaussian distribution for C,  was used as the boundary condition: 

where X is the downwind distance at  which the boundary condition is applied. This is done to 
avoid singularity at x = 0. Thus the values for the cross-wind integrated concentration calculated 
by equation (4) at X = 200 m are the boundary values for the simulation. 

(T, (2) = Ww1" x/ us ( 5 )  

is the vertical standard deviation at a distance X, z, is the source height, U s  is the wind speed at the 
source height and Q is the source strength. 

The boundary condition for at  X = 200 m is 
~ 

W e g  = - K,(dC,/dz), (6) 

K, = 3 K ,  for unstable stratification, (7) 

K, = K ,  for stable stratification, (8) 

K ,  = 0.1 AJE. (9) 

where the eddy coefficients are assumed as 

Here K ,  and K, are the eddy coefficients for momentum and heat respectively and E ( = f q 2 )  is 
the turbulent kinetic energy. The use of equations (7) and (8) is common p r a c t i ~ e . ' ~ ~ ' ~  

The boundary conditions in the vertical direction are 

ac,/az = 0, a q a z  = 0, a F / a z  = o (10) 

ac,/az = 0, we, = 0, coy =o (1 1) 

at the top of the boundary and 
- 

~ 

at the bottom of the boundary. Equations (1H3) along with boundary conditions (4H11) can be 
solved if the length scales are specified. 

The length scale A is obtained frornl3 

A=0.25{1.8 zi[l -exp(-4z/zi)-0~0003 exp(8z/zi)]} (12) 
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for unstable stratification and from 
c 

A >  Az 

for stable stratification, where zi is the inversion height, z is the vertical height and Az is the grid 
size in the vertical direction. The other length scales are specified as 

A2 = c2 A, 

A3 = c3 A. 

The values of the constants A = 075, b = 0.125, s = 1.8, c2 = 0 3  and c3 = - 0.3 are based on 
Lewellen and Teske's second-order closure model.' 

A TIME-SPLITTING FINITE ELEMENT SCHEME 

As a result of extensive tests of different numerical schemes on the advective transport equation in 
air pollution modelling, Chock16 concluded that the finite element method with linear basis 
function retains the peak value well, has tolerable spurious oscillations and requires short 
execution time and minimal memory storage. Currently, the time-splitting finite element scheme 
is commonly used for long-range transport problems with the inclusion of extensive atmospheric 
chemical reactions." For these reasons we propose a time-splitting finite element scheme for the 
numerical solution of equations (1H3). 

The domain was discretized into 96 grid points in the x=direction uniformly distributed with 
Ax = 50 m and 49 grid points in the vertical z-direction with Az = 25 m for z <zi and Az = 50 m for 
z>zi .  The governing equations of interest are lumped together into four groups owing to the 
similarity in the terms: - 

[x+U*=O, ac, ac 

awC, awC,- + U--O, ax 
-+ v+-( ace 1 +, 2bsq - =o; ;" at ax - 3 A 



TURBULENT DIFFUSION IN A CONVECTIVE BOUNDARY LAYER 183 

~ a w ~ ,  + -( 1 -) Aq ~ WC, - z( a A2 9%) - ;( $)% = 0, 

- - + - ( - ) c 0 , - ~ ( A 2 q ~ ) + f ( ~ ) ~ = 0 .  acB, 1 2bsq - 

at 3 A 

at 3 A 

Equations (16H19) are the governing transport equations for C,, c and cB, in the x-direction. 
Equations (20)-(24) are the transport equations in the z-direction. Equations (16H22) were 
solved sequentially whereas equations (23) and (24) were solved simultaneously. 

The finite element spatial discretization of (16)-(24) is performed using the Galerkin finite 
element method (GFEM) via the following expansions in the piecewise polynomial basis 
functions: 

M -  
q z ,  t )= E C O j ( t )  Nj(Z), 

j =  1 

In the discretized domain there are N nodes in the x-direction and M nodes in the z-direction. In 
equations (25) the summations on the left correspond to approximations in the x-direction 
whereas those on the right correspond to the approximations in the z-direction. Ni(x) and N,(z) 
are piecewise linear basis functions in the x- and z-directions respectively. Inserting equation (25) 
into the weak (Galerkin) form of (16H24) leads to the standard GFEM equations written in 
matrix notation as 

where @ is a global vector containing all the nodal values of C,, WC, and q. M is the mass 
matrix, K is the ‘advection plus diffusion’ matrix and f is a ‘source term’ vector. The form of the 
mass matrix M, the ‘advection plus diffusion’ matrix K and the source term vector f depends on 
the equation under study. For example, in equations (16) and (17) K has purely advection terms 
and there is no contribution to f. However, in equation (18) K will have contributions from the 
third term on the LHS as well. For equations (19), (21) and (22) K will have contributions only 
from the second term on the LHS and f has contributions from the third and fourth terms on the 
LHS. Since equations (16H22) are solved sequentially, the matrices K and M will be of the block 
tridiagonal type and f will incorporate the natural boundary conditions. 

The semidiscretized equations are integrated in time using either the Crank-Nicolson (implicit) 
or the forward (explicit) Euler scheme, depending on the nature of the equations. Since equations 
(16H18) contain only the dependent variables C,,, wcg and respectively, there is no contribu- 
tion to the RHS of equation (26) (the f-term) after spatial discretization. The Crank-Nicolson 
(implicit) scheme was used for the temporal discretization of equations (16H18). On the other 
hand, equations (19H22) contain terms other than the dependent variables and contribute to the 
f-term in equation (26). Therefore the Euler scheme (explicit) was used for temporal discretization 
of equations (19H22). Equations (23) and (24) are coupled and the Crank-Nicolson (implicit) 
scheme was used for greater numerical stability. 
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Application of the Crank-Nicolson scheme to the standard GFEM equation (26) arising from 
equations (16H18) leads to 

Rearrangement of equation (27) gives 

M K  M K  -+- { @ ; + I } =  --- {@'}, 
[At 2 1  [At 2 1  

where 0' are the discrete nodal values of the unknowns C,, WC, and & at time step n and 0;' 
are the discrete nodal values of the unknowns C,, 5 and 

discretization of equations (19H22) leads to 

at time step n +  1. 
Similarly, application of the forward Euler scheme to equation (26) arising from spatial 

Rearrangement of equation (29) gives 

[ 21 {@;+ '}=[ --K]{@;} M +{f} .  At 

It should be noted that equations (1 6)-(22) were solved individually and sequentially whereas 
equations (23) and (24) were solved simultaneously. Solution of equations (16H19) at each jth 
vertical grid point completes one sweep in the x-direction. This sweep gives the values of C,, WC, 
and %at each grid point for some intermediate time step. Using these values, equations (20H24) 
are solved at each jth horizontal grid point, completing the sweep in the z-direction. This sweep 
gives the solution of C,, WC, and at the next time step. The time step must be chosen such that 
the Courant number criterion is satisfied. The boundary conditions in the x-direction according 
to equations (4) and (6) are used for every sweep in the x-direction. Natural boundary conditions 
are used at the rightmost boundary. The boundary conditions in the z-direction according to 
equations (10) and (1 1) are used for every sweep in the z-direction. 

The details of the time-splitting technique are as follows: 



TURBULENT DIFFUSION IN A CONVECTIVE BOUNDARY LAYER 185 

(37) { c 8 * * } = { f : } +  2 - K Z  {&*}, [%I [ Y t  ] -  
[%+~]{Gn+1}+[~] i c8 f l i l }={ f f }+  

[y{G""}+[x+~]{an+1}={f:}- 

The subscript and superscript notation for the mass matrix, advection matrix and source term 
vector have been used to differentiate the individual matrices arising from the Galerkin scheme of 
equations (16H18). Thus M, is the mass matrix from equations (16H18) and the subscript x 
denotes the x-direction transport equations. Similarly, K i  , K: and K: are the advection matrices 
from the x-direction equations (16H19) and f, is the source term vector for the x-direction in 
equation (19). Subscript z is used for the z-direction transport equations (20)-(24). 

EDDY DIFFUSIVITY MODEL 

Although it is well known that the first-order closure turbulence model (eddy diffusivity or K -  
diffusion model) cannot describe the plume behaviour in convective boundary layers,'-' it 
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Figure 1. Steady state contours of the non-dimensional cross-wind integrated concentration as a function of dimen- 
sionless height and dimensionless downwind distance calculated from (a) the K-diffusion model and (b) the second-order 

closure model. The source is at zJzi = 0.09 (100 m) 
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remains the most popular model in air pollution studies. So far these studies have not explicitly 
compared the plume behaviour predicted by the K-diffusion model with that predicted by LES or 
other second-order closure models. 

The K-diffusion model in its two-dimensional formI8 is given by 

where Kz,(z)  is the eddy diffusivity determined from the empirical expression of Lamb and 
Duran.” It is based on the Monin-Obukhov similarity theory coupled with observational or 
computationally generated data. 

In order to compare the K-diffusion theory with the second-order closure model, a time- 
splitting finite element scheme similar to the one described previously is used to solve equation 
(40) for the same source strength and wind profile U ( z )  with the same grid system and time step. 

RESULTS AND DISCUSSION 

Using the turbulence variables calculated from a modified Mellor-Yamada level 3 model,20 
Engerl’ showed that the second-order closure model agreed qualitatively with Willis and 
Deardorff’s  experiment^.'-^ Sun13 used a simple one-dimensional model to calculate mean flow 
quantities and the turbulence variables and improved upon Enger’s results. More recently, 
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i 
Figure 2. The mean plume height non-dimensionalized with inversion height zi as a function of dimensionless downwind 
distance. The solid line is the second-order closure model result. The triangles are from Willis and Deardorfl’s tank 
experiment’ for zJzi = 0.067. The vertical bars indicate the standard deviation over six large-eddy simulation 

experiments’ 
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Nieuwstadt and De Valk’ used a large-eddy model to simulate buoyant and non-buoyant plume 
behaviour. These studies use finite difference schemes to simulate the dispersion of passive 
contaminants from near-ground and elevated sources. 

In order to compare the results of the present model with some of the previous studies, we 
introduce the following dimensionless parameters: 

- 
c e ~ *  =(U,zi/Q8,)cB,, 

x* =(W*/zi Um)X,  (44) 

Z *  =Z/Zi, (45) 

where C:, G* and %* are the dimensionless cross-wind integrated concentration, concentra- 
tion flux and covariance of concentration and temperature respectively. X *  is the dimensionless 
downwind distance and Z* is the dimensionless vertical height. U ,  is the mean wind speed in the 
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x’ 
Figure 3. Comparison of the calculated non-dimensional cross-wind integrated concentration at ground level as a 
function of dimensionless downwind distance with Prairie Grass data,” free-convection similarity theory,* ’ Lamb’s 

resultsz2 and Willis and Deardorffs data’ 
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convective boundary layer, w* is the convective velocity scale, 0, is the convective temperature 
scale, zi is the inversion height and Q is the source strength. The following simulations are carried 
out for 14:OO EST during day 33 of the Wangara experiments. The ratio U , / w ,  is about 1.69. 

Case A ‘Near-ground-level source’: z,/zi = 0.09 (100 m) 

Figure l(a) shows the plume behaviour for a near-ground emission simulated by the K -  
diffusion model (equation (40)), whereas Figure l(b) shows that the second-order turbulence 
closure model in the present work can simulate the plume ‘lift-off’ phenomenon and predict a 
local maximum of C :  = 1.42 at a downwind distance of X *  = 1.56 and a vertical height of 
Z* = 0.98. This ‘lift-off’ phenomenon has been confirmed recently by Poreh and Cermak‘s 
wind-tunnel experiment.’ The downwind location of this maximum compares well with the LES 
results of Nieuwstadt and De Valk’ and with Deardorff and Willis’s laboratory data.’e2 However, 
the local maximum is reached at a vertical height of Z* =0.98 in contrast to the LES results where 
Z* =0.8. This could be due to the difference in the treatment of boundary conditions at the top of 
the boundary layer. In the present model we adopted Sun’s approach’ and consider an overlying 
stable boundary layer above inversion which permits the diffusion process. Thus the vertical 
location of the local maximum in this work agrees with that of Sun’s work. Figure 2 shows that 
the mean plume height calculated by the present model compares favourably with the LES results 
and the experimental data.2 Figure 3 compares the ground-level cross-wind integrated concentra- 
tion between the Prairie Grass field data,2’ the power law from free-convection theory,21 
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Figure 4. Steady state contours of the non-dimensional cross-wind integrated concentration as a function of 
dimensionless height and dimensionless distance calculated from (a) the second-order closure model with the source 
at zJzi = 0.50 (550 m) (the grid size for this simulation was Az = 25 m, Ax = 50 m) and (b) the large-eddy model9 

(z,/zi = 0.49) 
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Lamb's numerical results22 (z,/zi = 0.025), Deardorff and Willis's experiments' (z,/zi = 0.067, 
concentration measured at z/zi = 0.05) and the second-order closure model of this work. 

Case B. 'Source in the middle of the mixed layer': z,/zi = 0.5 (550 m) 

Figure 4(a) shows the contours of C ;  for the release of the passive material in the middle of the 
mixed layer predicted by our model. Figure 4(b) shows the numerical results of the LES model of 
Nieuwstadt and De Valk. Our model results show that the plume centreline descends and 
impinges on the ground with a value of C:= 1.36 at X* =0.73, which agrees well with Willis and 
Deardorff's experiments4 (C: = 1.8, X* =0.8). Our results give a local minimum at X* = 089 and 
Z* = 0.63 which agrees with the LES result, whereas Enger's results do not clearly show this 
minimum. There is also an elevated maximum with a value of C:=1.08 at X*=091 
and Z* = 0.98. In order to ascertain the existence of this elevated local maximum, we have carried 
out simulation using different vertical grid sizes. The horizontal grid size remains the same at 
50 m. Results for a vertical grid size of 20 m and for a coarser grid of 50 m both have the same 
features as those shown in Figure 4(a). Furthermore, the mass conservation, which is a measure of 
accuracy for various numerical schemes, is about 98,6% for Figure 4(a). 

The choice of model parameters and the calculations of turbulence variables are critical issues 
in higher-order closure modelling of turbulent flows. Therefore it is important to see the effects of 
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Figure 5. Steady state contours of the non-dimensional cross-wind integrated concentration as a function of dimen- 
sionless height and dimensionless downwind distance calculated from (a) Sun's model parameters and turbulence 

variables and (b) the second-order closure model in this work with the source at z,/zi = 0.50 (550 m) 
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model parameters and turbulence variables on the concentration contours. Figure 5 compares the 
results calculated from Sun’s model parameters and turbulence variables with those calculated 
from this work. Sun’s model predicted an elevated local maximum of C: =@97 at X *  = 1-15 and 
Z* =0.97. The differences in downwind location of the local maxima and minimum between Sun’s 
model and the present model are probably due to the differences in the vertical profiles of the 
turbulence variables. Figure 6 compares the K-diffusion theory and the second-order model. It is 
clear that the K-diffusion theory does not provide the local maxima and minimum which are 
predicted by the LES and second-order closure models. 

The CPU times used by the second-order closure model are about 18 times used by the K- 
diffusion model because there are two additional partial differential equations for the second- 
order closure model. Furthermore, equations (1H3) are much more complicated than equation 
(40). There are nine time-split equations with source terms for the second-order closure model 
(Equations (16H24)) whereas there are only two simple time-split equations for the K-diffusion 
model. For the grid system of Ax = 50 m and Az = 25 m with At = 1 s, the CPU times are 1517 and 
84 s for the second-order closure model and the K-diffusion theory respectively. For Ax = 100 m, 
Az = 50 m and At = 2 s, the CPU times decrease to 208 and 13 s respectively on an IBM 3090- 
300E machine. Even with these coarse grids, the second-order closure model provides accurate 
information on the local maxima and minimum, with values close to those in Figure 6(b). 
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Figure 6. Steady state contours of the non-dimensional cross-wind integrated concentration as a function of dimen- 
sionless height and dimensionless downwind distance calculated from (a) the K-diffusion model and (b) the second-order 

closure model with the source at z,/z, = 0.50 (550 m) 
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However, the spurious oscillations in Figure 6(a) become intolerable for the K-diffusion theory. 
Since equations (16)-(24) derived by the time-splitting scheme can be solved in parallel, we expect 
that parallelization of the code will make the algorithm even more computationally efficient. 

CONCLUSIONS 

It is demonstrated that the second-order closure model can simulate the correct plume behaviour 
in a convective boundary layer. The model results compare well with large-eddy simulations, 
laboratory data and field tests, whereas the commonly used K-diffusion model cannot describe 
the plume behaviour in convective boundary layers. Furthermore, it is shown that the model 
parameters and turbulence variables have effects on the plume behaviour with regard to the 
location of local maximum and minimum concentrations. 
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APPENDIX 

Here our objective is to use a second-order closure model to calculate the vertical profiles of the 
mean and turbulence variables which must be provided in equations (1H3). The mean field 
equations for a horizontally homogeneous flow whose properties depend only on height z and 
time t are 

a v  a ( i q  
-=f v-f v,-- at aZ ' 

where U and V are the mean horizontal wind velocities, 0 is the mean temperature and 
f=  -0.826 x s - '  is the Coriolis parameter at Hay, Australia (34"30S, 144O56'E). U ,  and 
V, are the components of the geostrophic wind. 

An invariant second-order closure model of turbulent shear flow developed by Lewellen and 
Teske' and Donaldson' for the atmospheric surface layer is extended to a convective boundary 
layer. With the assumption of horizontal homogeneity, the one-dimensional unsteady state 
differential equations for determining the turbulence variables from the second-order closure 
model are 

-= a i i  - 2 i i % +  A( A z q ~ ( i i ) )  -!( i% -;) -=, 2bq3 
at aZ aZ 

(49) 
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__ 

at 

at 

at 

- 

- 

- - V W - -  we-+- ( 122q-(ve) iz-) -~ 
ave -ao -av a 
at aZ aZ aZ -- 

- 
awe -ao g - a 
-= -ww-+-e2+2- 
at aZ o, aZ 

-ao a ( iZ - )  2bsqiF 
-= - 2 ~ e - + -  A2q- (e2 )  -~ 
a e 2  
- 

at aZ aZ A '  

(53) 

(54) 

(55)  

(57) 

_ _ _ -  
where uu, vu, ww, uw and VW are the components of the Reynolds stress tensor. The equation for 
uv is not included because UU does not appear in other Reynolds stress equations. u6,ue and 
are the components of the turbulent heat flux; B" is the temperature variance. These equations 
represent a balance between production, transport and destruction processes for the Reynolds 
stress equations, temperature flux equations and temperature variance equation. Terms with 
length scales A2 and A3 represent parametrizations of the velocity diffusion term and the pressure 
diffusion term respectively. Equations (46H57) form a set of equations for the mean and 
turbulence variables. 

Since UU and VV appear in other equations only in terms of q, equations (49)-(51) can be 
combined to form one equation for the turbulent velocity q (=G'"): 

_ -  - 

-dU -dV 9 -  d 
- - ~ u w - - ~ v w - + ~ - w ~ + -  

at dz dz 0, dz 
a 4 2  -- 

2bq3 
+2- A3q-(ww) -~ 

:z( d", - ) A 

Equations (46)-(48) and (5lH58) form a set of 11 partial differential equations with three 
unknown mean variables, U ,  V and 0, and eight unknown turbulent variables, q, ww, uw, uw, z, 
v8, w e  and B'. The length scales appearing in the above equations are given by equations 
(12H15), thus giving a closed set 11 time-dependent partial differential equations to determine the 
mean and turbulence variables. The above set of equations were solved numerically using 
SPRINT,23 which is a general-purpose computer program for the numerical solution of math- 
ematical models that involve mixed systems of time-dependent algebraic, ordinary and partial 
differential equations. The partial differential equations are solved by using a method-of-lines 
approach in which the problem is discretized in space and then integrated in time. The grids in the 
vertical direction are evenly spaced, with the uppermost grid point at 2.0 km. Since we were 
interested in the 14:OO EST profiles, the initial profiles for 12:OO EST were specified for the mean 

_- -  
- -  
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and turbulence variables. The lower boundary conditions are consistent with the 
Monin-Obukhov ~imilarity.’~ The mean gradients and turbulence quantities were set to zero at 
the upper boundary. 

Figure 7 compares our model prediction with other  model^'^ for the dimensionless turbulent 
kinetic energy (E/w: =+q’/w:). It should be noted that in Figure 7, except for Willis and 
Deardorff’s experimental data,’ all the vertical profiles are generated by one-dimensional 
models. The model by Andrt et a1.26 is the most sophisticated and contains 34 differential 
equations for the turbulence variables because it is a third-order closure model. Enger’ ’ modified 
and used Mellor and Yamada’s level 3 model,”, which requires equations for turbulent kinetic 
energy and temperature variance. Sun and Chang’s simplified model” uses mean flow equations 
with first-order closures and an equation for turbulent kinetic energy. Therefore it cannot 
simulate the temperature variance. For the sake of brevity, it suffices to say that our model 
predictions for other turbulence variables compare well with the results of Deardorff ” (LES), 
Wyngaard and Cote2* (second-order closure model with a transport equation for dissipation) 
and Sun and OguraZ9 (modified Mellor-Yamada level 3 model). The CPU times for the 
numerical solution of equations (46H48) and (5lH58) are 1625,985 and 409 s for 81,61 and 41 
grid points respectively. The numerical solutions using 41 grid points show slight oscillations 
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Figure 7. Comparison of our model prediction (solid line) with other vertical profiles of normalized turbulent kinetic 
energy (Andre et ~ 1 . , ’ ~  Willis and DeardorfT?’ Engerl2 and Sun and ChangI5) 
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within the first 400 m from the ground. However, the profiles are quite close to those obtained 
with 81 grid points. 
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